Glutamine versus Ammonia Utilization in the NAD Synthetase Family

نویسندگان

  • Jessica De Ingeniis
  • Marat D. Kazanov
  • Konstantin Shatalin
  • Mikhail S. Gelfand
  • Andrei L. Osterman
  • Leonardo Sorci
چکیده

NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS). Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine) in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown) glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine) is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS structural elements associated with glutamine-utilizing capabilities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The reported human NADsyn2 is ammonia-dependent NAD synthetase from a pseudomonad.

Nicotinamide-adenine dinucleotide (NAD+) synthetases catalyze the last step in NAD+ metabolism in the de novo, import, and salvage pathways that originate from tryptophan (or aspartic acid), nicotinic acid, and nicotinamide, respectively, and converge on nicotinic acid mononucleotide. NAD+ synthetase converts nicotinic acid adenine dinucleotide to NAD+ via an adenylylated intermediate. All of t...

متن کامل

Salmonella typhimurium nit is nadE: defective nitrogen utilization and ammonia-dependent NAD synthetase.

S. typhimurium nit mutants are defective in nitrogen assimilation, despite having normal levels of assimilatory enzymes. Complementation, enzyme assays, and genetic mapping show that nit is nadE. We present evidence that ammonia, not glutamine, is the physiological substrate for eubacterial NAD synthetases and that low activity completely accounts for the mutant phenotype.

متن کامل

Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase.

NAD+ is an essential co-enzyme for redox reactions and is consumed in lysine deacetylation and poly(ADP-ribosyl)ation. NAD+ synthetase catalyzes the final step in NAD+ synthesis in the well characterized de novo, salvage, and import pathways. It has been long known that eukaryotic NAD+ synthetases use glutamine to amidate nicotinic acid adenine dinucleotide while many purified prokaryotic NAD+ ...

متن کامل

Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase.

Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 Å (1 Å=0.1 nm) long allows transfer of ammonia from one active ...

متن کامل

Ammonia assimilation by rhizobium cultures and bacteroids.

The enzymes involved in the assimilation of ammonia by free-living cultures of Rhizobium spp. are glutamine synthetase (EC. 6.o.I.2), glutamate synthase (L-glutamine:2-oxoglutarate amino transferase) and glutamate dehydrogenase (ED I.4.I.4). Under conditions of ammonia or nitrate limitation in a chemostat the assimilation of ammonia by cultures of R. leguminosarum, R. trifolii and R. japonicum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012